• Viện Tiến tiến về Kỹ thuật và Công Nghệ (AVITECH)

  • Xê-mi-na khoa học

    19/04/2022: TS. Nguyễn Chí Thành (AMST, Hà Nội), CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images

    Due to its communication efficiency and privacy-preserving capability, federated learning has emerged as a promising framework for machine learning in 5G-and-beyond wireless networks. Therefore, the novel designs of wireless networks to support the stable and fast operation of federated learning are of great interest. This talk will first highlight the reasons why federated learning becomes important in the future, briefly introduce communication- oriented research directions for realizing federated learning in wireless networks and then discuss state-of-the-art solutions for a massive multiple-input multiple-output (MIMO) network to efficiently support federated learning.

    Speaker: TS. Nguyễn Chí Thành, AMST, Hà Nội

    Time: 15:30, Tuesday, April 19, 2022

    Venue: Webinar

    speaker

    NGUYEN CHI THANH received the Ph.D. degree in computer science from the Nagaoka University of Technology, Japan, in 2012. He is currently a Researcher with the Institute of Information Technology, AMST, Hanoi, Vietnam. His research interests include deep learning, computer vision, medical image analysis, and natural language processing.

    Cùng chuyên mục

    11/04/2024: TS. Đặng Trần Bình (Bộ môn Khoa học máy tính), Tương tác giữa thông tin chủ đề và Thông tin ngữ cảnh cho việc biểu diễn văn bản

    Trong hầu hết các ứng dụng, việc hiểu và biểu diễn văn bản luôn đóng vai trò quan trọng, đặc biệt là trong xử lý tự động. Cùng với các đặc điểm bề mặt của từ, thông tin về chủ đề rất có ý nghĩa và cần thiết để cung cấp ý nghĩa ngữ cảnh […]

    11/04/2024: PGS.TS. Hoàng Văn Xiêm (Bộ môn Kỹ thuật Robot), Tương tác Người – Robot: Thách thức và cách tiếp cận mới

    Công nghệ Robot đã và đang đóng vai trò quan trọng việc định hình sự phát triển của cuộc cách mạng công nghiệp 4.0. Cùng với trí tuệ nhân tạo – AI, công nghệ Robot mang lại nhiều cải tiến cho lĩnh vực tự động hóa nói riêng và các hoạt động phát triển kinh […]

    07/03/2024: Nguyễn Văn Phi (Viện Trí tuệ nhân tạo), Mô hình tạo sinh cho dữ liệu y tế

    Một trong những vấn đề lớn của xử lý ảnh y tế là việc thiếu hụt dữ liệu gắn nhãn do chi phí, thời gian và sự sai lệch trong nhãn của các chuyên gia. Mô hình phân tán (Diffusion models) có khả năng sinh dữ liệu một cách chân thực bằng cách mô phỏng […]