• Viện Tiến tiến về Kỹ thuật và Công Nghệ (AVITECH)

  • Xê-mi-na khoa học

    19/02/2019: TS. Hoàng Văn Xiêm (ĐH Công nghệ), Joint Layer Prediction for Improving SHVC Compression Performance and Error Concealment

    Scalable High Efficiency Video Coding (SHVC) standard is expected to play a more important role in the heterogeneous landscape of broadcasting, multimedia, networks, and various services applications as it is specified as a layered coding technique in the ATSC (Advanced Television Systems Committee) 3.0. However, its block-based structure of temporal and spatial prediction makes it sensitive to information loss and error propagation due to transmission errors. In this context, we propose an improved SHVC with a joint layer prediction (JLP) solution which adaptively combines the decoded information from the base and the enhancement layers to create an additional reference for the SHVC enhancement encoder. To optimize the quality of the joint prediction, the minimum mean square error (MMSE) estimation is executed in computing a combination factor which gives weights to each contribution of the decoded information from the layers. In addition, the proposed JLP is integrated into the SHVC decoder to work as an error concealment solution to mitigate the error propagation happening inevitably in practical video transmission. Experiments have shown that the proposed SHVC framework significantly outperforms its relevant benchmarks, notably by up to 14.8% in bitrate reduction with respect to the standard SHVC codec. The proposed SHVC error concealment strategy also greatly improves the concealed picture quality as well as reducing the problem of error propagation when compared to conventional error concealment approaches.

    Speaker: TS. Hoàng Văn Xiêm, ĐH Công nghệ

    Time: 15:30, Tuesday, February 19, 2019

    Venue: E3-707, 144 Xuan Thuy, Cau Giay, Hanoi

    speaker

    Hoang Van Xiem is a member of the Faculty of Electronics and Telecommunications, Vietnam National University – University of Engineering and Technology (VNU-UET). He received the Ph.D. degree (with Distinction) from Lisbon University, Portugal, in 2015, the M.Sc. degree from Sungkyunkwan University, South Korea, in 2011, and the B.E degree from Hanoi University of Science and Technology, Vietnam, in 2009, all in Electrical and Computer Engineering. He is an executive committee member of VNUUTS Joint Innovation and Technology research center. His research interests are machine learning, image, video processing and robot vision. Dr. Xiem has published more than 40 papers on image and video coding and regularly reviews for many renowned IEEE, IET and EURASIP journals, including IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Image Processing, and IEEE Transactions on Broadcasting. He also serves as a technical committee member for many international conferences and funding agency worldwide. He has received several technical awards for his contributions on image and video coding, including the Best paper award of the Picture Coding Symposium 2015 (Australia), the Best paper award of the International Workshop on Advanced Image Technology 2018 (Thailand), and the Ph.D. award of the Fraunhofer Portugal Challenge 2015, and the recent 2018 Outstanding reviewer award of the Elsevier Journal of Signal Processing: Image Communication.

    Cùng chuyên mục

    11/04/2024: TS. Đặng Trần Bình (Bộ môn Khoa học máy tính), Tương tác giữa thông tin chủ đề và Thông tin ngữ cảnh cho việc biểu diễn văn bản

    Trong hầu hết các ứng dụng, việc hiểu và biểu diễn văn bản luôn đóng vai trò quan trọng, đặc biệt là trong xử lý tự động. Cùng với các đặc điểm bề mặt của từ, thông tin về chủ đề rất có ý nghĩa và cần thiết để cung cấp ý nghĩa ngữ cảnh […]

    11/04/2024: PGS.TS. Hoàng Văn Xiêm (Bộ môn Kỹ thuật Robot), Tương tác Người – Robot: Thách thức và cách tiếp cận mới

    Công nghệ Robot đã và đang đóng vai trò quan trọng việc định hình sự phát triển của cuộc cách mạng công nghiệp 4.0. Cùng với trí tuệ nhân tạo – AI, công nghệ Robot mang lại nhiều cải tiến cho lĩnh vực tự động hóa nói riêng và các hoạt động phát triển kinh […]

    07/03/2024: Nguyễn Văn Phi (Viện Trí tuệ nhân tạo), Mô hình tạo sinh cho dữ liệu y tế

    Một trong những vấn đề lớn của xử lý ảnh y tế là việc thiếu hụt dữ liệu gắn nhãn do chi phí, thời gian và sự sai lệch trong nhãn của các chuyên gia. Mô hình phân tán (Diffusion models) có khả năng sinh dữ liệu một cách chân thực bằng cách mô phỏng […]