Modern data analysis faces several challenges in real-life applications. Many real-life systems are required to make decision in (near) real-time while handling several streaming datasets in parallel. In many practical applications, impulsive noise and outliers appear in the data. Tensor datasets are expected to bring more versatile representation than conventional vector or matrix datasets, at the expense of high computational complexity. How to efficiently fuse data from several large-scale high-dimensional streaming data sources?
In data analysis, principal component analysis (PCA) is widely used for extracting low-dimensional subspaces from high-dimensional data. Subspace tracking, an important class of PCA, has drawn much attention. It is well-known that PCA is very sensitive to impulsive noise and outliers. PCA for impulsive noise and outliers is robust PCA. Robust PCA for streaming data is robust subspace tracking and is much more difficult.
The project aims to develop efficient data fusion methods and algorithms based on robust subspace tracking, for high-dimensional streaming data from several relevant sources affected by impulsive noise and outliers. We approach robust structured subspace tracking. Structured subspace tracking facilitates us to fuse data. When used with robust techniques, it helps deal with impulsive noise and outliers. We also want to illustrate and validate the developed methods and algorithms in biomedical signal processing and communications.
Other information
Co-PI: Dr. Nguyen Viet Dung, Group leader, AVITECH